PANEL’86 EXPODATA 197

A CONCURRENCY CONTROL MECHANISM WHICH USES
SEMANTIC KNOWLEDGE ABOUT THE APPLICATIONS
Amauri Marques Da Cunha
Universidade Federal do Rio de Janeiro
Rio de Janeiro - Brasil

I - INTRODUCTION

The very fundamental idea which is the kernel of the flexible mechanism
described in this work, is that the use of the semantic knowledge about the
defined operations on the system objects, may lead to a greater parallelism in
the entire system. This approach was studied from the theoretical point of view
in IKUNG & PAPADIMITRIOU 791. In this work, the authors demonstrated that
a Concurrency Control mechanism will allow more parallelism, the more it

knows about the semantics of the application.

For example, when the mechanism has knowledge of the objects' meaning and
the defined operations on these objects, it may generate a greater number of
correct execution histories IKUNG & PAPADIMITRIOU 79/, then theoretically
it will permit more concurrency in the system. The concurrency increased in
this way, will be called potential concurrency, because we cannot guarantee
that it will be advantageous in all real situations, without doing other practica!

considerations like overheads for example.

The issue of utilizing knowledge of the application to enhance Concurrency
Control performance, was studied in several works. The most interesting
propositions are ILAMPORT 76|, IGARCIA-MOLINA 83|, ILYNCH 83,
ISCHWARZ & SPECTOR 84!, |ALLCHIN & McKENDRY 83' and |WEIHL &3!.
With regard to other works, the originality of the one presented here, is the
proposition of a classification in semantic knowledge levels, of all the
operations carried out on the system objects. This classification is defined in a
naturally hierarchical way which allows, besides the specification of a
Concurrency Control mechanism for each level of Semantic Knowledge, the
grouping of these specifications in only one flexible mechanism. This
mechanism is able to simultaneously manage the requests from all of the

semantic levels. When we only have operations with a high degree of Semantic

198 XII CONFERENCIA LATINOAMERICANA DE INFORMATICA

Knowledge (SK), the mechanism will allow a high degree of potential
concurrency. The potential concurrency increases dynamically according to the
SK-level of the operations under execution on an object, if we use the proposed
methodology and mechanism.

This paper is organized as follows. Section 2 presents the assumptions about the

Cornputer System, and section 3 defines the SK-levels of the operations on the
objects. Section 4 describes the necessary mechanisms for each level, and the

5th section js devoted to the important topic of recovery. Section 6 introduces
the Concurrency Control Flexible Mechanism with SK utilization and gives an
example. Section 7 presents a discussion about our approaches. Finally, in the’

8th section we give our conclusion.

2 - ASSUMPTIONS ABOUT THE SYSTEM

The transaction concept has always been successfully used in the Data Bases
domain. This concept has been studied and generalized during recent years -see
IGRAY 811. A good example of an extension to this concept, is the one of
nested transactions IMOSS 81| and |BEERI et al. 83l.

More recently, several extensions have been proposed for the use of the
transaction concep{ in the construction of distributed operating systems, which
are not exclusively conceived for the Data Bases environment, but for more
general applications. The reader will find in |SPECTOR & SCHWARZ 83!, a
discussion on the subject. The new propositions that appear to be more

interesting, are the following:

- The ARGUS Project at MIT |LISKOV 82! and [WEIHL & LISKOV 85!;
- The operating system CLOUDS at Georgia Institute of Technology
JALLCHIN & McKENDRY 83J;
- The ARCHONS Project at Carnegie-Mellon University
ISHA et al. 83al and ISHA et al. 83bl;
- The TABS prototype at Carnegie-Mellon too
[SCHWARZ & SPECTOR 84| and ISPECTOR et al. 84l.
With the exception of SHA's works at Carnegie-Mellon, all of these
propositions, explicitly modelize the object as abstract types. This modelization
allows the inclusion of a greater variety of operations in the transactions, which
represents a powerful extension for the manipulation of shared objects other
than Data Bases.
~ This approach was adopted in the conception of the mechanism describec_i in this

work. We suppose that every system object is an instance of an abstract data

PANEL’86 EXPODATA 199

type, whose complete and formal specification is produced at the system design
time ILISKOV & ZILLES 74|.

All the possible operations on a given object are rigorously defined, and
therefore all of the operations’ properties will be well known by the
transactions that utilize the object. Each object is encapsulated by a kind of
monitor that ensures its specification is respected. Additionally, we suppose
that each site has only one object (this assumption is made only to simplify the
exposition), and that each site has a kernel of the distributed operating system
playing the role of transaction manager, as well as treating the synchronization
problems, recovery, deadlock, and intersite communications. Other precisions
about this approach may be obtained in ISCHWARZ & SPECTOR 84| and
IWEIHL & LISKOV 85|.

This work deals particularly with the problem of transactions synchronization
on objects. Its goal is to allow the creation of the greatest possible number of
transactions execution histories on an object, without violation of the
consistency constraints. For the intersite synchronization, one will use other
techniques, for example the global serialization using timestamping ordering.
We will not study these techniques here. For discussion of this subject, the
reader could see for example IBERNSTEIN & GOODMAN 82[.

Finally, we chose the two-phase locking technique of IESWARAN et al. 76l, as
the basic technique for the proposed mechanism. If necessary, it is possible to
combine this basic technique with a multitude of possible variations like the
utilization of multiple versions, timestamping, etc. Even the adaptation to
utilize the optimistic approach - which is radically opposed to the pessimistic
two-phase locking - is easily feasible. Therefore, the mechanism presentation

from this point of view, does not mean any loss of generality.

The deadlocks resolution, that is indispensable when one uses locks, is not
explicitly treated here. Nevertheless, we will suppose the mechanism has the
capability to accept requests to abort transactions, which might be generated

by deadlock resolution procedures.

200 XII CONFERENCIA LATINOAMERICANA DE INFORMATICA

3 - SEMANTIC KNOWLEDGE LEVELS OF THE OBJECT OPERATIONS

This SK-levels classification, was mainly conceived to show the feasibility of a
mechanism which is sensitive to the SK-level of the requests of operations
made by transactions. A similar classification was proposed and studied from
the theoretical point of view by IKUNG & PAPADIMITRIOU 79!.

Nevertheless, observing the more recent propositions of SK utilization to
optimize the Concurrency Control, principally those which use the abstract
data types approach such as ISCHWARZ & SPECTOR 84|,
IWEIHL & LISKOV 85|, |WEIHL 83| and |ALLCHIN & McKENDRY 83|, we can
remark that all of them have a tendency to mix the Concurrency Control
mechanism with the object encapsulation. We mean by this that there is no
clear separation between the Concurrency Control algorithms, and the object
encapsulating procedures that implement its operations. In this model, the
Concurrency Control mechanism has the right to observe the object contents,
i.e. its internal structure and even the values therein stored, to decide about
the compatibility of any two operations. This model was explicitly employed in
IWEIHL 83I.

The work ISCHWARZ & SPECTOR 84| intented to separate the two functions,
using the compatibility matrixes between the operations. Nevertheless, these
compatibility matrixes of the examples given in [SCHWARZ & SPECTOR 84,
do not avoid the obligation that the Concurrency Control has to access the

object content (value). So, this model is fundamentally the same as IWEIHL 83!.

To define the SK-levels, we initially established the following two categories
according to whether the Concurrency Control mechanism does or does not
have the right to observe the object contents to make its decisions. If it has this
right, or more particularly if the requests of operation on the object, convey
semantic information that éllows the mechanism to efficiently use the object
contents to decide about their compatibility, we can say that these requests are
of a higher semantic level than the others. We consider that these requests are

classified at the SK-level-three.

We chose to create a SK frontier at this point, because we consider that any

mechanism which is capable of dealing with the SK-level-three will be more

PANEL’86 EXPODATA 201

resource consuming than the others which deal with the inferior levels. It
should be used for an application, only if it has an advantageous

price/performance ratio.

The requests that are of a level inferior to the SK-level-three, convey less
semantic information. We consider the SK-level-one is attached to the
fundamental operations defined on the object. We state further the
SK-level-two, for the operation requests that convey more information than
the fundamental operations of the SK-level-one. The additional information is
represented by parameters added to the fundamental operations. These
parameters amplify the quantity of available information to the Concurrency
Control mechanism, leading to more parallelism in the system. The
SK-level-zero and four are also defined, simply for completeness. They have
already been identified in |KUNG & PAPADIMITRIOU 79! as the higher and
lower possible levels of semantic knowledge respectively. In the following we
present a SK-levels classification, illustrated by several examples, representing
a pragmatic tentative in detailing the one - alreédy stated in
IKUNG & PAPADIMITRIOU 79I:

SK-LEVEL-ZERO - the request of operation on the object, does not convey any

Semantic Knowledge.

Example 0.1 - a request of an exclusive lock on the object, like for

instance the classicai lock WRITE (W) from the Data Bases domain.

Example 0.2 - in a Real Time SYstem, after the occurrence of an alarm,
an emergency transaction is launched. Before evaluating the extension of
the problem indicated by this alarm, the transaction has to lock in an

exclusive mode a certain number of objects.

SK-LEVEL-ONE - the request of operation on the object, is only composed by
one of the fundamental operations that were defined at conception time of the
abstract type. We recall that the object is an instance of such an abstract type.
From this formal definition of the operations, one extracts a compatibility
table between the operations, which gives all the ordered pairs of commutatives

operations.

202

XII CONFERENCIA LATINOAMERICANA DE INFORMATICA

Example 1.1 - the operations READ (R) and WRITE (W) from the Data

Bases.

representation of a compatibility table:

column: operation that owns a lock

line: operation that requests a lock

R \\
R Yes| No
W No | No

Example 1.2 - suppose we have a "strictly FIFO queue"-, with two types of
operations defined on: INSERT (I) or DELETE (D) an element. By its own
definition of a queue strictly FIFO, this queue does not admit the
commutativity between two type I operations. The insertions of two
elements have to be executed and validated, in the same order they
arrived. The same applies for the type D operations. So, two operations of

the same type cannot be compatible.

Furthermore, if the Concurrency Control mechanism only knows the
requests arriving to it - in the present case I or D - and if it does not have
the right to observe the interior of the object, then it cannot allow
simultaneous executions of the I and N operations on the same object. In

this situation it would not be capable of ensuring consistency. To

- demonstrate this, it is sufficient to suppose an initially empty queue.

When two operations, one I and the other D, arrive, we can see that the
execution order of these two operations is extremely important, because
each different execution order gives a different result as well. Then, in
this case, we cannot guarantee the commutativity between T and D. For

this reason, its compatibility table will not allow any parallelism:

RN

I No | No

D No | No

PANEL’86 EXPODATA 203

Example 1.3 - suppose we have a "weak FIFO queue®, with the same
operations as in example 1.2. As opposed to the strictly FIFO queue, the
weak FIFO queue is defined as the one in which the Insert operations can
be validated in an order different to the arriving order. The same thing
applies to the Delete operations. It means that two type I operations are
always commutatives, as are two type D operations. Otherwise, two
Aoperations of different types remain incompatible by the reasoning of the

example 1.2. This gives the following compatibility table:

1 D
I Yes | No
D No | Yes

This "weak FIFO queue" was adapted from ISCHWARZ & SPECTOR 84l,
and it was also used in |WEIHL & LISKOV 85| with the name of

"semi-queue”.

SK-LEVEL-TWO - at this level, we have all the level-one knowledge and,
further, for each incompatibility, the possible existing commutativities
according to a parameter added to the fundamental operation. This parameter
does not change the general nature of the operation, however it conveys more
detailed information about the operation meaning, creating in fact one
sub-operation for each possible parameter. The parameter absence in a request

of operation on an object, simply means that the request is SK-level-one.

Example 2.1 - a bank account object, on which are defined the operations
READ (R) and WRITE (W) of the example 1.1, at the SK-level-one. Among
all the semantic possibilities of the W operation, we suppose that the
more frequent are the deposits (d) of any amount of money and the
withdrawals (w) that do not exceed a certain threshold, as for instance the
ones coming from an ATM - Automatic Teller Machine. This kind of
withdrawal, which is already subject to constraints, is always paid by the
bank. Then we will have the same compatibility table as in example 1.1
for the SK-level-one. When the request specifies a sub-operation W(d) or
W(w), it will be necessary to see the following SK-level-two compatibility

table:

204 ~ XII CONFERENCIA LATINOAMERICANA DE INFORMATICA

B w(d) [W(w)
W(d) [Yes | Yes
W(w)|Yes | Yes

We observe in this example, that the perfect commutativities between the
(sub-)operations d and w, lead to an important increase of the parallelism.
In such a system, it is worthwhile specifying a second SK-level for the

WRITE operations.

Example 2.2 - we retake the previous example 2.1. Now we suppose that
the occurrence of simultaneous (sub-)operations W(w) will be a rare event
in the system. So, the prohibition of the W(w)/W(w) commutativity will
penalize only slightly the performance of the new system, with regard to
that of example 2.1. In other respects, we estimate that the serialization
of all W(w) (sub-)operations, that are made imperative if all pairs
W(w)/W(w) become incompatible, will greatly facilitate the design of the
other system modules. As an example we can mention protection against
errors and frauds. Hence, such a system simplification would bring about a
decrease in the number of routines, as well as a reduction in their
complexity, leading to an improvement of the overall performance. Here
is an illustration of utilization of SK-levels, that may give more
flexibility to the System design, in addition to the potential gains of
parallelism. In this case, we use the compatibility table below, instead of

the table in example 2.1.

w(d) | W(w)
w(d) | Yes | Yes

W(w)|Yes |No

Example 2.3 - suppose we have a directory object, where each element
(entry) is identified by a key formed by a character string. Its
fundamental operations are MODIFY (M) an element - which may be
insert or delete an element, or simply modify its contents - or LOOKUP
(L) an element, or still DUMP (D) the entire directory. At the

SK-level-one, the M and L operations cannot indicate the key of the

PANEL’86 EXPODATA 205

target element. The D operation is only defined at this level. Here is the

compatibility table of the SK-level-one:

M L D
NN N
N®) | ves | Yes
N Yes | Yes

o|e =

(*) the incompatibilities marked with an asterisk, may direct the
decision to the SK-level-two, provided that the key of the target

element is present as an operation parameter.

Nevertheless, we will not have here a compatibility table to characterize
the SK-level-two. The relations M==>M (here the symbol ==> means
precede), L==>M and M==>L do not «create dependencies
[SCHWARZ & SPECTOR 84|, when each operation is realized on a
different element of the directory. Therefore it is sufficient to keep a list
that contains all the parameters of the M or L operations which own a
lock on the object. The verification of the commutativity of one
(sub-)operation M(k) or L(k) just arrived (k = key of the directory element
addressed by the operation), with the ones already in execution, is done by

a simple search on the list (table) of accepted locks.

We recall that the commutativity L(k)/L(k'), even if k'=k, is detected at
the SK-level-one, so the test does not have to be done at the

SK-level-two.

SK-LEVEL-THREE - at this level, we have the sum of the level-one and
level-two knowledge and, in addition, we know that the operations

commutativity depends on the object value.

Example 3.] - a bank account object that has, among the operations
defined on it, a general operation of money withdrawal that brings
together all the kinds of possible withdrawals. In this case, two
withdrawal operations are commutative only if there is enough money in

the account.

206

XII CONFERENCIA LATINOAMERICANA DE INFORMATICA

Example 3.2 - we retake the "strictly FIFO queue” of example 1.3. The
incompatibilities I/D and D/I may be removed by a procedure of the
Concurrency Control mechanism, that is capable of observing the object

contents to make its decision in the following manner:

From example 1.2, we already know that when the queue is empty, there
is no commutativity between I and D. There are other equivalent
situations, and to show it let us state the variables:

ng = number of elements (validated) of the queue

np = number of D operations that own a lock on the object

ni = number of I operations that own a lock on the object

Effectively, the limit-situation is reached when ng=np, i.e. at the
moment the queue is potentially empty. In reality, the gqueue only
becomes truly empty, if all of the D-operations that own a lock on the
queue, are validated (we cannot forget that aborts are still possible before
validation). Anyway, since we have ng<np, we cannot guarantee that a
just arrived I-operation, will be compatible with all the E-operations that
already possess the lock. To demonstrate this, we suppose that this lock I
is granted. If this operation I is validated before the validation of the last
D-operation, we will have a different result from the one that would be
obtained if the validation of I had been done after the validation of the
last E. In this case, the commutativity hypothesis is contradicted, and so

the assertion is demonstrated.

It is interesting to observe that, even if the different results mentioned in
the above demonstration, do not seem to cause consistency problems, they
have to be strictly prohibited. Why?!!... Because the Concurrency Control
mechanism has to guarantee a global serialization of the transactions, to
ensure the system's pglobal consistency. The possible local
commutativities, that allow more parallelism and hence more potential
concurrency, are admitted on the condition that it permits (or does not
prevent) the construction of a global execution order of the transactions
IGARDARIN & MELKANOFF 82l. Thus, the operations on an object that
have the risk of giving different results from the semantic point of view,
according to their execution (validation) ordering, have all to be serialized

at the local level.

PANEL’86 EXPODATA 2017

Returning to the example, if we have a D-operation arriving and other
I-operations that already own a lock, we consider that the limit-situation
still depends on the variables nq and np. Effectively, the worst case
happens when all the D-operations are validated before all the
I-operations. Thus to grant a D-lock on the object concerned; supposing
that it already has other I-locks granted, it is néecessary that the condition
nq>nD be true. Furthermore, if we have a request for an I-lock, and the
object has already granted other D-locks, we will grant the lock only in

the case of ng>=np (we notice that the equality is admitted here).

Example 3.3 - we take again the "weak FIFO queue" of example 1.3.
Following the reasoning used in example 3.2, we can deduce that even the
compatibility D/D, which seemed to be completely natural, could only be
decided at the SK-level-three. If we suppose there are only D-locks

granted, an arriving request for a new D-lock, can only be accepted if
nq>nD or if ng=zero. We summarize the Concurrency Control rules on this

object as follows:

a - compatibility table SK-level-one:

I D
I Yes| No
D No | No

b - SK-level-three procedures:
b.l - incompatibility of SK-level-one I/D: the request for the I-lock,
is granted only if Ng>=np;
b.2 - D/I: the request D is granted if ng>np;
b.3 - D/D: the request is granted if ng>np or if ng=zero.

Observation - in the given examples, we only studied one exceptional
situation of the queues: the possibility that it becomes empty. Clearly,
this is the most important exception. However, in practice, we could
rarely suppose a queue to be infinite. In these cases, we would also have
to treat the possibility of having a full queue. If this happens, we could
use reasoning which is entirely analogous to the reasoning used in

examples 3.2 and 3.3. For instance, the compatibility 1/I will not be

208 XII CONFERENCIA LATINOAMERICANA DE INFORMATICA

possible at the SK-level-one; it will also be decided at the

SK -level-three, using the maximum dimension of the queue.

SK-LEVEL-FOUR - we can imagine that it will be possible in the future, to
store and/or analyse the complete Semantic Knowledge about all the
transactions and all the objects within a distributed system. With this
knowledge, the Concurrency Control mechanism could find all the possibilities
of commutativity between operations, as soon as the operations arrive. This
highest SK-level, corresponds to the "optimal schedulers™ that utilize the
maximum information possible about the transaction system
IKUNG & PAPADIMITRIOU 79!. This type of scheduler has the capability to
generate all the possible correct execution histories (logs), and therefore it is

optimal with respect to the parallelism.

& - THE NECESSARY MECHANISMS FOR EACH LEVEL

We need to make some comments about the SK-level classification, before the

presentation of the mechanisms.

Initially we notice that there is no sense in classifying at the SK-level-one, a
fundamer.tal operation that needs an exclusive access to the object. From the
point of view of the approach introduced here, this operation should in reality
be located at the SK-level-zero. Even at the SK-level-two, we do not have to
define a sub-opefation that is incompatible with all the others at the same
level. If this happens, we can say that in fact it can be reduced to a

SK-level-one, or even to a different SK-level-zero operation.

The WRITE (W) and READ (R) operations, classic in the Concurrency Control
study for the Data Bases, already represent a certain SK-level. With our
approach, the W operation - that requires an exclusive access to the object -
would be classified at the SK-level-zero. At the SK-level-one, we would only

have the R operation, which is always compatible with itself.

~ Finally it is interesting to observe that the SK-level classification can be

augmented by the definition of other intermediate levels. It is easy to conceive

PANEL’86 EXPODATA 209

for example that the level-two operations may still be divided in other
sub-operations by the adjunction of other parameters. Each parameter added to
a basic operation, may establish a new sub-level, with its corresponding
compatibility tables. The classification proposed here, seems to be a general
framework, and is able to accept some refinements concerning how to express

the Semantic Knowledge degrees of transaction systems.
4.1 - The Concurrency Control mechanisms used at each SK-level

SK-LEVEL-ZERO - the guarantee of exclusive access, may be obtained by

managing a semaphore for each object.

SK-LEVEL-ONE - this is a well-known case, and there is a vast literature about
it in the Data Bases domain. From the definition of the fundamental operations,
we establish a corhpatibility table between the operations. The utilization of
this table with the two-phase locking protocol |[ESWARAN et al. 76|, ensures
global consistency. Obviously the mechanism will also manipulate a table which

keeps the granted locks.

SK-LEVEL-TWO - it is a generalization of the SK-level-one. According to the

object semantics, we can distinguish two types of implementations.

In the first - as in example 2.1 of the previous section - we have one or several
compatibility tables of the SK-level-two, each one corresponding to a pair of

incompatible operations at the SK-level-one. A SK-level-two table, furnishes

the information about the compatibility between the different existent
sub-operations, derived from the fundamental operations. The Concurrency
Control algorithm, in deciding about the compatibility between a certain pair of
sub-operations, must first find the appropriate compatibility table, and then it

applies the two-phase locking protocol as in the SK-level-one.

The second type of implementation is for instance, the one in example 2.3.
Here, instead of consulting a compatibility table for the SK-level-two, the
algorithm stores in a list, the parameter of each sub-operation that has a
granted lock. This supplementary storage may be added to the proper lock table
to facilitate the manipulations. An arriving lock request, will only be accepted

if its parameter is not in the list (table) of granted locks. Naturally the logical

210 XII CONFERENCIA LATINOAMERICANA DE INFORMATICA

complement of this algorithm, should be available as a variation of this type of
implementation; in this case it should only accept the sub-operations having the
same parameter as another already in the granted locks table. Obviously, this
second type of implementation fits only in the situations where the parameters'
diversity cannot be limited, or is too great, as in example 2.3. Otherwise, the

first type with its compatibility tables would be sufficient.

The choice of the type of implementation and its possible variations, has to be
done as a preliminary, at the very moment of the conception and encapsulation

of the abstract object.

SK-LEVEL-THREE - at this level, the mechanism has the right to observe the
object contents to make its decisions. Example 3.1 of the previous section,

illustrates this idea very well.

Each object that is able to accept SK-level-three operations, will be initialized
with a special-purpose procedure, that verifies the commutativity of an
arriving request of operation on the object, with all the others which already
own a lock at that moment. This procedure may go as far as consultating the
semantic information conveyed by all the other operations that are present in
the lock table. This procedure may even execute the just arrived operation,

using the current (validated) object value, to accomplish its verification.

However, there are simpler situations, as in examples 3.2 and 3.3. Effectively,
the necessary information on these objects, can be summarized within counters
for these examples. If these counters are stored in main memory, this access to
the object will not be much more expensive than the (mandatory) access to the

lock table.

SK-LEVEL-FOUR - we are not yet capable of presenting the specifications for
this level. Nevertheless, previous work ILAMPORT 76| has demonstrated its
feasibility.

PANEL’86 EXPODATA 211

5 - THE RECOVERY PROBLEM

The need to abort a transaction, may appear at random. The main events that
give rise to an abort are:

- faults

- deadlocks

- Promptness Control

~ user request

Apart from in very special-purpose systems, normally the Concurrency Control
mechanism has to be able to deal with aborts in a way that preserves
consistency, and has to allow transactions recovery. The classical way to abort
a transaction, is to undo it, by resetting all the objects that were modified by
the transaction, to the initial state encountered by the transaction. However,
when we use semantic knowledge that induce the commutativity of operations
that modify the object state, we cannot simply reset the initial state, because
this would lead the system to an inconsistent state. We recall that the
commutativity of the operations on an object, allows that the local order of
execution (and validation) of the commutative operations, is different from the

global serialization order of the transactions which those operations belong to.

Thus, it is necessary to have a supplementary hypothesis to solve this problem.
We make the same supposition as that proposed by IGARCIA-MOLINA 83, i.e.,
we suppose that each operation involved in a commutativity relation, has a
counter-operation that is capable of undoing from the semantic point of view
the original operation. This counter-operation has to be imperatively
commutative with the other operatioﬁs and counter-operations belonging to the

same commutative set of its original operation.

A counter-operation may be represented either by the inverse operation on the
abstract object, or by another compensating operation. In any case it must not
demand the allocation of objects other than the object already concerned,

because on this object, the transaction has always the suitable lock, even during

the abort execution.

This additional hypothesis is, of course, very strong and, consequently, greatly

reduces the applicability of the proposed semantic levels. We note that even the

212 XII CONFERENCIA LATINOAMERICANA DE INFORMATICA

existence of commutative operations, was an already very restrictive
characteristic, to which we are obliged to add the existence of the
corresponding counter-operations. On the other hand, there are certainly many
particular systems, where the mechanisms proposed here, considerably increase
the concurency all over the system - see for instance IGARCIA-MOLINA 83|,
ILYNCH 83|, ISCHWARZ & SPECTOR 84/, IWEIHL & LISKOV 851, and
IWEIHL 83I.

6 - THE CONCURRENCY CONTROL FLEXIBLE MECHANISM

Observing the description of the Semantic Knowledge levels zero, one, two or
four, one notices that there is a perfect hierarchy between these levels. The
SK-level-zero does not permit any parallelism on the object. The SK-level-one
has a compatibility table that establishes the possible permitted concurrencies
between the operations defined on the object. The SK-level-two only exists for
each pair of SK-level-one incompatible operations. Hence, we clearly see the
possibility of simultaneously controlling the two levels: the one and the two. It
is sufficient to have a hierarchical structure on which the locking is made, and
that this structure be attached to the existent compatibility tables within each
level. This reasoning can equally be applied to the SK-level-three, that can be
reached either bv a SK-level-two incompatibility or by another SK-level-one
incompatibility. To correctly solve all concurrency cases that may occur on the

object, it will be sufficient to control an unique tree of locks.

Thus, we can use an unique mechanism to contro!l the concurrency on a object,
disregarding the SK-level of the transactions that utilize this object. And
further, such a flexible mechanism, will allow more parallelism as the
transactions (operations) Semantic Knowledge is higher. It dynamically adapts
itself, in a natural way with respect to the arriving transactions (operations),
i.e., if it treats a group of requests that conveys a high SK-level, it will allow
more potential parallelism. On the other hand, when an arriving group of
requests (of operations) has at least one low semantic level request, the degree
of concurrency automatically decreases by the mechanism functioning during

all the period this request owns its lock.

PANEL’86 EXPODATA 213

6.1 - An example of the Flexible Mechanism

We suppose an object that accepts the SK-levels one and two. The fundamental
operations defined on it, are the current ones usually made in the Data Bases
Systems domain:

R - only has the right to read the object

W - has the right to modify the object

The SK-level-one is described by the folfowing compatibility matrix CM1:

R w
CMI: R 1 0 where 1=Yes
W 0 0 and 0=No

We also suppose that the type W operations can modify the object, in three
different ways, identified respectively by the parameters A, B and C. So, W(A),
W(B) and W(C) will be the three possible sub-operations at the SK-level-two.
We still admit that W(A) and W(B) can be executed in any order, but W(C) is
commutative only with itself. The commutativities between these

sub-operations, are expressed by the compatibility matrix CM2:

W(A)|W(B)| W(C)
CM2: W(A)|1 1 0
W(B) |1 I 0
w(C)|0 0 |

To show clearly the hierarchical aspect, we represent the matrixes together,
adding a pointer (that may contain the nil value) to the SK-level-two within

each CMI element. The following figure represents this:

214 XII CONFERENCIA LATINOAMERICANA DE INFORMATICA

PANEL’86 EXPODATA 215

If the incompatibilities R/W and W/R had some possibilities of compatibility at
the SK-level-two, they could be represented for example, by the matrixes CM3

and CM# of the above figure.

The operations requested by the transactions, always have a well specified
SK-level. In our example, if a W operation does not convey a parameter, it will
be considered a SK-level-one request. During all the time this operation has a
lock, it has to prohibit the simultaneous execution of other W's, even if they are
of the SK-level-two. Therefore, a SK-level-one lock, can block one or several
possibilities of the SK-level-two - each set of (semantic) possibilities being

represented by a SK-level-two compatibility matrix.

On the other hand, each SK-level-two W operation will only allow (possibly)
other concurrent W's of the same SK-level. As long as there is at least one
SK-level-two W, no other SK-level-one W (and no other R either) can be

executed.

This example shows the need of a hierarchical locking table for this kind of
mechanism. The annex shows an implementation of the proposed mechanism,

and also describes its more important aspects.

7 - A DISCUSSION ABOUT OUR APPROACHES

The two principal approaches used in the conception of the proposed
mechanism, are discussed in this section.They are the shared abstract types
approach to model the system's objects, and the semantic knowledge leveis

approach that utilizes semantic knowledge about the application.

7.1 - The Shared Abstract Types Approach

This approach was well studied in ISCHWARZ & SPECTOR 84l. The same
approach has been developped at the MIT with the name of atomic data types
IWEIHL & LISKOV 85!,

216 XII CONFERENCIA LATINOAMERICANA DE INFORMATICA

7.1.1 - ADVANTAGES

The first and principal advantage is inherent to this approach. Effectively, the
manner of modeling objects as abstract types instanciations, is already oriented
towards the distributed model of computing, therefore facilitating the
development of distributed systems in general. We recall that the object is the
unit of permanent data within a system. This unit is used to control the
concurrent transactions. On the other hand, the manner of modeling objects in
the classical Data Bases approach, requires the utilization bf special and often
very expensive techniques to pass from the centralized to a distributed

framework.

The following advantages, are listed according to the classification of required

characteristics of a Real Time Distributed System, described in ILE LANN 83|.

FLEXIBILITY: this approach encapsulates the objects with some modules,
which constrains the objects to behave according to their specifications.
Hence, there is an obvious modularity in this approach. To change or
adapt the behaviour of an object, to fit new specifications, we can
envelop it with a new encapsulation module |WEIHL & LISKOV 851, We
can still encapsulate several different objects to unite them. This

modularity considerably increases the system's flexibility.

CORRECTNESS: an abstract type specification may be done through a
mathematical formalization. The proof of correctness of all the
operations on an object, is somewhat inherent to this approach._
Consequently, this rigor facilitates the transactions construction, and also
the establishment of a formal demonstration of the application's

correctness ILISKOV & ZILLES 74].

RELIABILITY: the abstract type approach makes possible an atomic
treatment of the object, as the one studied in IWEIHL & LISKOV 85I.
Thus, adding recovery procedures and even fault tolerant procedures to
the object encapsulation IWEIHL & LISKOV 85|, we could ensure a great
reliability at the local level. Its extension to the global level will depend
on other mechanisms, which will cope with the global atomicity and

resilience, and will enhance the local reliability.

- PANEL’86 EXPODATA 217

PROMPTNESS: in some particular cases, this characteristic may be
improved. We take the example of an object that admits compensating
operations, like the ones mentioned in section 5. We can imagine that it
will be possible in this case, to anticipate the validation of an operation
that modifies the object. If the possibility of compensation does not

endanger the consistency, therefore we can obtain an improvement on the

promptness.
7.1.2 - DISADVANTAGES

SPECIFICATION OF THE ABSTRACT TYPES: this is an inherent
disadvantage of this approach. We are obliged to conceive and develop
(and still program), the abstract types that are necessary to the
application. This handicap is represented in practice by a high
development cost in comparison with the other classical approaches. We
already know that in the future, we will have languages and/or distributed
operating systems, which will offer some primitives to assist the
specification of abstract types, and even possibly, the complete
encapsulation for the more frequently used types |WEIHL & LISKOV 85|.
Though this disadvantage tends to decrease with time, it will not be

eliminated.

OVERHEAD: obviously, this approach considerably increases the overhead
for all the object utilizations. The first experiments reported, for example
the TABS system from Carnegie-Mellon University |SPECTOR et al. 84,
confirm this assertion. However, we are sure that at least for the small
transactions or in general for applications that are simple, this approach
is not worthwhile. On the other hand, for the distributed systems of great
complexity, that have large size transactions, we can catch a glimpse of
good results for the parallelism degree, for the management of the
complexity, etc. It is still necessary to work out a lot of studies and

researches to find the trade-offs.

218 XII CONFERENCIA LATINOAMERICANA DE INFORMATICA

7.2 - The Semantic Levels Approach

7.2.1 - ADVANTAGES

I - the first advantage is to allow much more potential concurrency in

numerous cases, like for example the ones mentioned in section 3.

Nl - this approach only adds an overhead to the Concurréncy Control
mechanism, if it has to cope with the highest SK-levels. Indeed, take the
example of an implementation of the SK flexible mechanism presented in
section 6. Observing it, we ascertain its modularity with respect to the
SK-levels. The semantic lock table, the storing of the compatibilities, and
the procedures corresponding to the highest SK-levels (especially two and
three), are only used to treat the operations requests with these highest
levels. As soon as we are sure of having only SK low levels operations (as
zero or one for example), we can remove practically all that were added
to manage the other levels, bringing the mechanism to the same overhead

of a classical mechanism.

This reasoning can also be applied to the dynamic behaviour of the
system. Suppose we have on a site, the complete mechanism to cope with
all the SK-levels. To manage the requests of operations of the

SK-level-zero or SK-level-one, the mechanism will not have -in practice

any increase in its time overhead with regard to the classical mechanisms.
Only in the case of the arrival of higher SK-level requests, will the
mechanism consume more execution time. Nevertheless, at this moment,

we will have other gains from the point of view of the parallelism.

Il - the utilization of SK-levels, allows us to obtain some profits with a
common situation in the practice of transaction systems. Particularly in
the Real Time Systems, the transactions are specified, developed and
catalogued previously, to be dynamically launched later during the
system's life IDA CUNHA & TEIXEIRA 84l. In order to keep a sufficient
degree of generality for the transactions, we can think they will be
~catalogued with the lowest possible SK-level about the objects.
Otherwise, at the moment of a transaction dispatching, the transactions

manager will have more precisions about the current state of the system,

PANEL’86 EXPODATA 219

allowing in this manner to augment the SK-level of the transaction. Thus,
we can envisage the “refinémént" of the SK of a transaction already
catalogued, dynamically from the moment it has to be launched. This
"refinement” may also occur at the moment of dispatching a local action
on a site, because at this moment it could take advantage of the known

results of the (already executed) previous actions.

The example 0.2 in section 3, illustrates this situation, - with the

emergency transactions of a Real Time System.

. IV - the above advantage refers to the strategy of static allocation of
resources. The strategy of dynamic allocation can however take
advantage of = SK-levels utilization. Here, the moment when the
transaction requests the lock(s), i.e., the moment of dispatching the local
action on a site, it is precisely when there is the highest possible SK, and
then this is the best moment to decrease the probability of conflicts, and
consequently increase the potential parallelism. In attaining a diminution
of the probability of conflicts occurrence, one favours the dynamic
allocation of objects by the decreasing of the aborts percentage, which is

the principal handicap of this strategy.

7.2.2 - DISADVANTAGES

A major disadvantage of this approach, is the limitation of its utilization to
only certain kind of applications. We refer the reader to section 5, for a

discussion of this subject.

8 - CONCLUSION

We recall that the theoretical base of the proposed mechanism, is the work
developed in IKUNG & PAPADIMITRIOU 79[, where the authors demonstrated
the existent relation between the Concurrency Control permissiveness and the
semantic knowledge about the application. Using this idea, we defined four
levels of Semantic Knowledge (SK) that are hierarchically organized. We
suppose the objects are modeled as abstract types. Thus, each request of an

operation on an object, conveys a well-known SK-level, which is used by our SK

220 XII CONFERENCIA LATINOAMERICANA DE INFORMATICA

Flexible Mechanism. The higher the SK-levels of the requests received by the
méchanism on an object, the more parallelism it allows on this object. Using our
Flexible Mechanism, the parallelism increases and decreases automatically,

according to the SK-levels of the requests on the object.

In the literature, we find a similar idea in the protocol proposed by
IGRAY et al. 76, to deal with the granularity of objects in a Data Base. Our
proposed framework can also be applied to contro! the concurrency on variable
granularity objects - see example 2.3 of section 3. Nevertheless, the
hierarchical protocol used in IGRAY et al. 76!, is based on the more "physical"
concept of object granularity, whereas ours is based on the logical nature of the
operations on the object. So, our proposition is applicable to more general
situations - see section 3. We can still note that the "intention modes” of
IGRAY et al. 761, when applied to a node, prevent undesirable accesses to the
underlying structure. There is an analogous situation in our mechanism, when a
low SK-level operation acquires a lock on a object and therefore blocks

undesirable accesses even if they have a high SK-level (see section 6).

The work |[SCHWARZ & SPECTOR 84| had a lot of influence on our proposition.
Our approaches are significantly the same. From the description of the
examples studied in [SCHWARZ & SPECTOR 84|, it emerges that their
Concurrency Control mechanism can explicitly utilize the parameters of the
fundamental operations defined on the object, in a way that is entirely
analogous to our SK-level-two. Furthermore, their mechanism needs in several
cases, to observe the object contents, as in our SK-level-three. This appears
only implicitly in the paper |SCHWARZ & SPECTOR 84!, where the mechanism
is always presented in the form of a compatibility table. In this manner, they
cannot treat correctly the "weak FIFO queue" of example 3.3 of section 3, in

the cases where the queue may be contingently empty (or contingently full).

Hence, the utilization of compatibility tables between the operations - even
adding parameters to these operations - does not seem sufficient to correctly
express all the possible cases of concurrency on the abstract types. Effectively,
it is still necessary to add special-purpose procedures, that are capable of
. "refining" the verification of the commutativity, in all the possible situations
that are not provided by the compatibility table. This is done in a very natural

way in our SK-levels proposition, but is not explicitly treated in the proposition

' PANEL’86 EXPODATA - 221

ISCHWARZ & SPECTOR 84l.

The paper |WEIHL 83| introduces the notion of dynamic atomicity. It models the
Concurrency Control mechanism (scheduler) and the encapsulation of the object
(modeled itself as an abstract type), into a single module. This dynamic
atomicity clearly corresponds to our SK-level-three. The {ramework of
IWEIHL 83| is less flexible than ours, because it does not allow simpler (and less

expensive) treatments.

Finally, we comment on the propositions of the CLOUDS Operating System
IALLCHIN & McKENDRY 83! with respect to ours. CLOUDS proposed four
conceptual levels for the Concurrency Control mechanism, with the same idea
that the higher the level, the fnore semantic information is available to the
mechanism, and so the more parallelism is allowed. There is a fundamental
difference between the conceptual levels of CLOUDS and the SK-levels. The
CLOUDS conceptual levels are mutually exclusive by definition, i.e., they
cannot simultaneously coexist within the same object and in the same
application. This is due to the fact that they were not defined in a hierarchical
manner, and so the mechanism cannot. traverse, in a way that preserves the
—consistency, from one level to another, as we can do with the SK-levels. In this

sense, our proposition allows much more flexibility.

We hope the framework proposed here, may lead to a more comprehensive study

of the Concurrency Control on objects modeled as abstract types.

222 XII CONFERENCIA LATINOAMERICANA DE INFORMATICA

REFERENCES -

JALLCHIN & McKENDRY 82] J.E. ALLCHIN et M.S. McKENDRY
"Object-based Synchronization and Recovery"
Georgia Institute of Technology, Technical Report GIT-ICS-82/15,
(septembre-1982) 20p. '

JALLCHIN & McKENDRY 83| J.E. ALLCHIN et M.S. McKENDRY
"Synchronization and Recovery of Actions"
Proc. 2nd ACM SIGACT-SIGOPS Symposium on Principles of Distributed
Computing, Montreal (ao(t-1983) pp.31-34

IBEERIJ et al. 83] C. BEERI, P.A. BERNSTEIN, N. GOODMAN, M.Y. LAI
et D.E. SHASHA -
"A Concurrency Control Theory for Nested Transactions"
Proc. 2nd ACM SIGACT-SIGOPS Symposium on Principles of Distributed
Computing, Montreal (aolt-1983) pp.45-62

IBERNSTEIN et al. 80/ P.A. BERNSTEIN, D.W. SHIPMAN et J.B.ROTHNIE JR.
"Concurrency Control in a System for Distributed Databases (SDD-1)"
ACM Transactions on Database Systems, Vol.5, No.l (mars-1980) pp.18-51

IBERNSTEIN & GOODMAN 81| P.A. BERNSTEIN et N. GOODMAN
"Concurrency Control in Distributed Database Systems"

Computing Surveys, Vol.13, No.2 (juin-1981) pp.185-221

IBERNSTEIN & GOODMAN 821 P.A. BERNSTEIN et N. GOODMAN
"A Sophisticate's Introduction to Distributed Database Concurrency
Control", Proc. 8th Int. Conf. on Very Large Data Bases,
Mexico (septembre-1982) pp.62-76

ICAREY & STONEBRAKER 841 M.J. CAREY et M.R. STONEBRAKER
"The Performance of Concurrency Control Algorithms for Database
Management Systems", Proc. 10th Int. Conf. on Very Large Data Bases

Singapore (ao0t-1984) pp.107-118

IDA CUNHA & TEIXEIRA 84| A.M. DA CUNHA et M.J. TEIXEIRA
"SIGMA - Um Executivo Distribuido para Ambientes Automatizados em

Tempo Real”; Proc. 5° Congr. Bras. Automatica
Campina Grande (septembre-1984) pp.517-522

PANEL’86 EXPODATA . ' 223

JESWARAN et al. 76! K.P. ESWARAN, J.N. GRAY, R.A. LORIE et
I.L. TRAIGER, "The Notions of Consistency and Predicate Locks in a
Database System”, Communications of the ACM, Vol.19 No.11
(novembre-1976) pp.624-633

IGARCIA-MOLINA 83] H. GARCIA-MOLINA
"Using Semantic Knowledge for Transaction Processing in a Distributed
Database”", ACM Transactions on Database Systems, Vol.8 No.2
(juin-1983) pp.186-213

IGARDARIN & LEBEUX 77| G. GARDARIN et P. LEBEUX
"Scheduling Algorithms for Avoiding Inconsistency in Large Databases”
Proc. 3rd Int. Conf. on Very Large Data Bases,
Tokyo (octobre-1977) pp.501-506

IGARDARIN & MELKANOFF 82! G. GARDARIN et M. MELKANOFF
"Concurrency Contro! Principles in Distributed and Centralized
Databases"

INRIA - Rapport de Recherche No.113 (janvier-1982) 91p.

IGRAY et al. 76! J.N. GRAY, R.A. LORIE, G.R. PUTZOLU et I.L. TRAIGER
"Granularity of Locks and Degrees of Consistency in a Shared Data Base”
Proc. IFIP Working Conf. on Modelling in Data Base Management Systems
Freudenstad (janvier-1976) pp.695-723

IGRAY 811 J.N.GRAY
"The Transaction Concept: Virtues and Limitations",
Proc. 7th Int. Conf. on Very Large Data Bases,
Cannes (septembre-1981) pp.144-154

IKORTH 83 H.F. KORTH
"Locking Primitives in a Database System",
Journal of the ACM, Vol.30 No.! (janvier-1983) pp.55-79

IKUNG & PAPADIMITRIOU 79! H.T. KUNG et C.H. PAPADIMITRIOU
"An Optimality Theory of Concurrency Control for Databases”
Proc. ACM SIGMOD Int. Coni. on Management of Data,

Boston (mai-1979) pp.116-126

224 XII CONFERENCIA LATINOAMERICANA DE INFORMATICA

ILAMPORT 761 L.LAMPORT
"Towards a Theory of Correctness for Multi-user Data Base Systems"
Technical Report CA-7610-0712, Massachusetts Computer Associates Inc.

(octobre-1976)

ILE LANN 83| G.LE LANN
‘ "On Real-Time Distributed Computing"
Proc. IFIP-83 Congress, Paris (septembre-1983) pp.741-753

ILISKOV 82| B. LISKOV
"On Linguistic Support for Distributed Programs"
IEEE Transactions on Software Engineering, Vol.SE-8 No.3 (mai-1982)
pp.203-210

ILISKOV & ZILLES 74| B. LISKOV et S. ZILLES
"Programming with Abstract Data Types"
Proc. ACM SIGPLAN Symposium on Very High Level Languages
Santa Monica (mars-1974) pp.50-59

ILYNCH 83] N.A.LYNCH
"Multilevel Atomicity - A New Correctness Criterion for Database
Concurrency Control"
ACM Transactions on Database Systems, Vol.8, No.4 (décembre-1983)
pp-484-502

IMOSS 811 J.E.B. MOSS
"Nested Transactions: An Approach to Reliable Distributed Computing”
Thése Ph.D. MIT, Technical Report MIT/LCS/TR-260 (avril-1981) 178p.

ISCHWARZ & SPECTOR 84! P.M. SCHWARZ et A.Z. SPECTOR
"Synchronizing Shared Abstract Types"
ACM Transactions on Computer Systems, Vol.2, No.3 (ao(it-1984)
pp.223-250

ISHA et al. 83al L. SHA, J.P. LEHOCZKY, E.D. JENSEN et N. PLESZKOCH
"Data Consistency and Transactién Correctness - A Modular Approach to
Non-serializable Transactions" '
CARNEGIE-MELLON University, draft (16-aofit-1983) 28p.

PANEL’86 EXPODATA

225

ISHA et al. 83b! L. SHA, E.D. JENSEN, R.F. RASHID et J.D. NORTHCUTT
"Distributed Co-operating Process and Transactions"
in Distributed Computing Systems - Synchronization, Control and
Communication, Y.PAKER ed., ACADEMIC PRESS (1983) pp.23-50

ISHA 841 L. SHA
"Modular Concurrency Control and Failure Recovery ...Consistency,

Correctness and Optimality”
These en préparation 2 I'Université CARNEGIE-MELLON,

draft (29-ao0t-1984) 12p.

ISPECTOR & SCHWARZ 83/ A.Z. SPECTOR et P.M. SCHWARZ
"Transactions: A Construct for Reliable Distributed Computing"
ACM Operating Systems Review, Vol.17, No.2 (avril-1983) pp.18-35

ISPECTOR et al. 84| A.Z. SPECTOR, J. BUTCHER, D.S. DANIELS,
D.J. DUCHAMP, J.L. EPPINGER, C.E. FINEMAN, A. HEDDAYA &
P.M. SCHWARZ
"Support for Distributed Transactions in the TABS Prototype"
CARNEGIE-MELLON University,
Technical Report CMU-CS-84-132 (juillet-198%) 25p.

IWEIHL 83! W.E. WEIHL
"Data-dependent Concurrency Control and Recovery”

Proc. 2nd ACM SIGACT-SIGOPS Symposium on Principles of Distributed

Computing, Montreal (ao(t-1983) pp.63-75

IWEIHL & LISKOV 85! JW.E. WEIHL et B. LISKOV
"Implementation of Resilient Atomic Data Types"
ACM Transactions on Programming Languages and Systems,

Vol.7,No.2 (avril-1985) pp.244-269

