
PAl'JEL'86 EXPODATA

A CONCURRENCY CONTROL MECHANISM WHICH USES
SEMANTIC KNOWLEDGE ABOUT THE APPLICATIONS

Amauri Marques Da Cunha
Universidade Federal do Rio de Janeiro

Rio de Janeiro -Brasil

1 - INTRODUCTION

197

The very fundamental idea which is the kernel of the flexible mechanism

described in this work, is that the use of the semantic knowleclge about the

defined operations on the system objects, may Jead to a greater parallelism in

the entire system. This approach was studied from the theoretical point of vie"'·

in IKUNG & PAPADJMJTRIOU 791. ln this work, the authors demonstrateci that

a Concurrency Control mechanism will allow more parallelism, the more it

knows about the semantics of the app1ication.

For example, when the mechanism has knowledge of the objects' meaning anel

the defined operations on these objects, it may generate a greater number of

correct execution histories IKUNG & PAPADJMJTRIOU 79!, then theoreticallv

it will permit more concurrency in the system. The concurrency increased in

this way, will be called potentiaJ concurrency, because we cannot guarantee

that it will be advantageous in all real situations, without doing other practica!

considerations like overheads for examole.

The issue of utilizing knowledge of the application to enhance Concurrencv

Control performance, was studieci in severa! works. The most interestinr.

propositions are ILAMPORT 761, IGARCIA-MOUNA 831,

!SCHWARZ & SPECTOR 84!, IALLCHIN & McKENORY 83 1 and

!L YF'JCH 83!,

IWEIHL 8ll.

With regard to other works, the originality of the one presentf'd hf're, is tlH'

proposition of a classification in semantk know]edge leveis, of all thE'

operations carried out on the system objects. This classification is defined in a

naturally hierarchical way which allows, besicles the specification of a

Concurrency Control mechanism for each Jevel of Semantic Knowledge, the

grouping of these specifications in only one flexible mechanism. This

mechanism is able to simultaneously manage the requests from ali of the

semantic Jevels. When we only have operations with a high degree of Semantic

198 XH CONFERENCIA LATINOAMERICANA DE INFORMATICA

l<n01.dedgE> (SK), the mechanism will allow a high degree of potential

concurrency. The potential concurrency increases dynamically according to the

SK-IevE'I of the operations under execution on an objett, if we Use the proposed

rne-thorlology and mechanism.

This paper is organized as follows. Section 2 presents the- assumptions ahout the

Cornputer System, and section "3 defines the SK-levels of the opPrations on the

objects. Section 4 describes the necessary mechanisms for each Jevel, and the

5th section is devoted to the important topic of recovery. Section 6 introduces

the Concurrency ControJ Flexible Mechanism with SK utilization and gives an

example. Section 7 presents a. discussion about our approaches. FinaUy, in the ·

8th section we give our condusion.

2 - ASSUMPTIONS ABOUT THE SYSTEM

The transaction concept has always been successfully used in the [)ata Bases

domain. This concept has been studied and generalized during recent years -see

IGRA Y 811. A good example of an extension to this concept, is the one of

nested transactions IMOSS 811 and IBEERI et al. 831.

More recently, severa] extensions have been proposed for the use of the

transaction concept ín the construction of distributed operating systems, which

are not exclusively conceived for the Data Bases environment, but for more

general applications. The reader will find in ISPECTOR & SCHWARZ 831, a

discussion on the subject. The new propositions that appear to be more

interesting, are the following:

- The ARGUS Project at MIT !LISKOV 821 and IWEYHL & LISKOV 85!;

- Tlte operating system CLOUDS at Georgia Institute of Technology

IALLCHIN & Mc-KENDRY 831:

- The ARCHONS Project at Carnegie-Mellon University

ISHA et ai. 83al and ISHA et ai. 83bl;

- The T ABS prototype at Carnegie-l\1ellon too

!SCHWARZ & SPECTOR 841 and ISPECTOR et al. 841.

With the exception of SHA's works at Carnegie-Mellon, all of these

propositions, explicitly modelize the objectas abstract types. This modelization

allows the inclusion of a greater va.riety of operations in the transactions, which

represents a powerful extension for the manipulation of shared objects other

than Data Bases.

This approach was adopted in the conception of the mechanism described in this

work. We suppose that every system object is an instance of an abstract data

PANEL'86 EXPODATA 199

type, whose complete and formal spedfication is produced at the system design

time lLISKOV & ZILLES 74lo

AU the possible operations on a given object are rigorously defined, and

therefore ali the operations' properties wiH be well known by the

transactions that utilize the object. E.ath object is etu:apsulated by a kind of

monitor that ensurés its spedfkation is respected. Additi011alíy, we suppose

that each site hás only one object (this assumption is made only to simplify the

expositíon), and that each si te has a kernel of the distributed operating system

playing the role of transaction manager, as well as treatin[!; the synchronization

problems9 recovêry, deadlock, and intersite communications. Other precisions

about this approach may be obtained in !SCHWARZ & SPECTOR 841 and

IWEIHL & USKOV 851.

This work deals particularly with the problem of transactions synchronization

on objects. Its goal is to allow the creation of the greatest possible number of

transactions execution histories on an object, without violation of the

consistency constraints. For the intersite svnchronization, one wíii use other

techniques, for example the global serialization using timestamping ordering.

We will not study these techniques here. For discussion of this subject, the

reader could see for example !BERNSTEIN & GOODMAN 821.

Finally, we chose the two-phase Jocking technique of IESWARAN et al. 76!, as

the basic technique for the proposed mechanism. If necessary, it is possible to

combine this basic technique with a rnu!titude of possible variations Iike the

utilization of multiple versions, timestamping, etc. Even the adaptation to

utilize the optimistic approach - which is radical!y opposed to the pessimistic

two-phase locking - is easily feasible. Therefore, the mechanism presentation

from this po!nfof view, does not mean any loss of generality.

The deadlocks resolution, that is indispensable when one uses locks, is not

expHcitly treated here. Nevertheless, we will suppose the mechanism has the

capabi!ity to accept requests to abort transactions, which might be generated

by deadlock resolution procedures"

200 XII CONFERENCIA LATINOAMERICANA DE INFORMATICA

3 - SEMANTIC KNOWLEDGE LEVELS OF THE OBJECT OPERA TIONS

This SK-levels classification, was mainly conceived to show the feasibility of a

mechanism which is sensitive to the SK-Ievel of the requests of operations

made by transactions. A similar classification was proposed and studled from

the theoretical point of view by IKUNG & PAPADIMITRIOU 791.

NevertheJess, observing the more recent propositions of SK utilization to

optimize the Concurrency Control, principallv those which use the abstract

data types approach such as !SCHWARZ & SPECTOR 841,

IWEIHL & LISKOV 851, IWEIHL 831 and IALLCHIN &:McKENDRY 831, we can

remark that all of them have a tendency to mix the Concurrency Control

mechanism with the object encapsulation. We mean by this that there is no

clear separation between the Concurrency Control algorithms, and the object

encapsu!ating procedures that implement its operations. ln this model, the

Concurrency Control mechanism has the right to observe the object contents,

i.e. its internal structure and even the values therein stored, to decide about

the compatibility of any two operations. This model was explicitly employed in

IWEIHL 831.

The work ISCHW ARZ & SPECTOR 841 intented to separa te the two functions,

using the compatibility matrixes between the operations. Nevertheless, these

compatibility matrixes of the examples given in !SCHWARZ & SPECTOR 841,

do not avoid the obligation that the Concurrency Control has to access the

object content (value). So, this model is fundamentally the sarne as IWEIHL 831.

To define the SK-Ievels, we initially estahlished the fo!Jowing two categories

accor<iing to whether the Concurrency Control mechanism does or does not

have the right to observe the object contents to make its decisions. If it has this

right, or more particularly if the requests of operation on the object, convey

semantic information that allows the mechanism to efficiently use the object

contents to decide about their compatibility, we can say that these requests are

of a higher semantic Jevel than the others. We consider that these requests are

classified at the SK-level-three.

We chose to create a SK frontier at this point, because we consider that any

mechanism which is capable of dealing with the SK-level-three will be more

resource consuming

should be used for

PANEL'86 EXPODATA 201

than the others which deal with the inferior leveis. It

an application, only if it has an advantageous

price/performance ratio.

The requests that are of a levei inferior to the SK-1eve1-three, convey less

semantic information. We consider the SK-level-one is attached to the

fundamental operations defined on the object. We state further the

SK-level-two, for the operation requests that convey more information than

the fundamental operations of the SK-·level-one. The additional information is

represented by parameters added to the fundamental operations. These

parameters amplify the quantity of available information tó the Concurrency

Control mechanism, leading to more parallelism in the system. The

SK-level-zero and four are also defined, simply for completeness. They have

already been identified in IKUNG & PAPADIMITRIOU 791 as the higher and

lower possible leveis of semantic knowledge respective1y. ln the following we

present a SK-levels classification, illustrated by several examples, representing

a pragmatic tentatlve in detailing the one · already stated in

IKUNG & PAPADIMITRIOU 791:

SK-LEVEL-ZERO - the request of operation on the object, does not convey any

Semantic Knowledge.

Example 0.1 - a request of an exclusive lock on the object, like for

instance the dassical lock WRITE (W) from the Data Bases domain.

Examp!e 0.2 - in a Real Time System, after the occurrence of an alarm,

an emergency transaction is launched. Before evaluating the extension of

the problem indicated by this alarm, the transaction has to lock in an

exclusive mode a certain number of objects.

SK-LEVEL-ONE - the request of operation on the object, is only composed by

one of the fundamental operations that were defined at conception time of the

abstract type. We recall that the object is an instance of such an abstract type.

From this formal deflnition of the operations, one extracts a compatibiHty

table between the operations, which gives ai! the ordered pairs of commutatives

operations.

202 XII CONFERENCIA LATINO.A:M:ERICANA DE INFORMATICA

Example Li - the operations READ (R) and WRITE (W) from the Data

Bases.

representation of a cornpatibility table:

colurnn: operation that owns a lock

line: operation that requests a lock

R w
R Yes No

.w No No

Examplê 1.2 - suppose we have a "strnctly FIFO quem~"• with two types of

operations defined on: INSERT (I) or DELETE (D) an element. By its own

definition of a queue stríctly FIFO, this queue does not admit the

cornmutativity between two type J operations. The insertions of two

elements have to be executed and validated, in the same order they

arrived. The sarne app1íes for.the type D operations. So, two operations of

the sarne type cannot be compatible.

Furthermore, if the Concurrency Control rnechanism only knows the

requests arrivíng to ít - in the present case I or D - and if it does not have

the right to observe the interior of the object, then it cannot allow

simultaneous executions of the I and n operations on the sarne object. In

this situation it would not be capable of ensuring consistency. To

demonstrate this, it is sufficient to suppose an initiaHy empty queue.

When two operatíons, one 1 and the other D, arrive, we can see that the

execution order of these two operatíons is extremely important, because

each different execution order gives a different result as well. Then, in

this c:ase, we cannot guarantee the commutativity between T and D. For

this reason, its compatibility table wíll not allow any parallelism:

PANEL'86 EXPODATA 203

Example L3 - suppose we have a ''weak flFO queue", with the sarne

operations as in example 1.2. As opposed to the strictly FIFO queue, the

weak FIFO q..aeue is deflned as the one inwhich the Insert operations can

be va.Hdated in an order different to the arriving order. The sarne thing

applies to the Delete operations. It means that two type I operations are

always cornmutatives, as are two type D operations. Otherwise, two

operations of different types rernàin incómpatible by the reasoning of the

example 1.2. This gives the fo!lowing compatibi.lity table:

I D
y Yes No

D No Yes

This ;'weak FIFO queue" was adapted from !SCHWARZ & SPECTOR 841,

and it was also used in IWEIHL & LISKOV 851 with the name of

"séni -queue".

SK-LEVEL-TWO "' át this levei, we have all the level-one knowledge and,

further, for each incompatlbility, the possible existing commutativities

according to a parameter added to the fundamental operation. This parameter

does not change the general nature of the operation, however it conveys more

detaHed information about the operatíon meanin~, creatinr; in fact one

sub-operation for each possible parameter. The parameter absence in a request

of operation on an object, simply means that the request is SK-level-one.

Example 2.1 - a bank account object, on which are defined the operations

READ (R) and WRITE (W) of the example LI, at the SK-level-one. Among

aH the semantic possibilities of the W operation, we suppose that the

more frequent are the deposits (d) of any amount of money and the

withdrawals (w) that do not exceed a certain threshold, as for instance the

ones coming from an A TM - Automatic Teller Machine. This kind of

withdrawal, which is already subject to constraints, is aiways paid by the

bank. Then we will have the sarne compatibility table as in example 1.1

for the SK-level-one. When the request specifies a sub-operation W(d) or

W(w), it wHl be necessary to see the following SK-level-two compatibility

table:

204 XII CONFERENCIA LATINOAMERICANA DE INFORMATICA

W(d) W(w)
~-

W(d) Yes Yes

W(w) Yes Yes

We observe in this example, that the perfect commutativities between the

(sub-)operations d and w, lead to an important increase of the paraHelism.

ln such a system, it is worthwhile specifying a second SK-level for the

WRITE operations.

Example 2.2 - we retake the previous example 2.1. Now we suppose that

the occurrence of simultaneous (sub-)operations W(w) will be a rare event

in the system. So, the prohibition of the W(w)/W(w) commutativity will

penalize only slightly the performance of the new system, with regard to

that of example 2.1. In other respects, we estimate that the serialization

of al1 W(w) (sub-)operations, that are made imperative if ali pairs

W(w)/W(w) become incompatible, wi!l gr~atly fad1itate the design of the

other system modules. As an example we can mention protection against

errors and frauds. Hence, such a system simplification would bring about a

decrease in the number of routines, as well as a reduction in their

complexity, leading to an improvement of the overall performance. Here

is an Hlustration of utilization of SK-levels, that may give more

flexibility to the System design, in addition to the potential gains of

parallelism. ln this case, we use the compatibility table below, instead of

the table in example 2. J.

\V(d) W(w) j
~·----- --~ ~-]-
W(d) Yes Yes
-~~-- - ~- ----

W(w) Yes No

Example 2.3 - suppose we have a directory object, where each element

(entry) is identified by a key formed by a character string. Its

fundamental operations are MODIFY {M) an element - which may be

insert or delete an element, or simply modify its contents - or LOOKUP

(L) an element, or still DUMP (D) the entire directory. At the

SK-level-one, the !VI and L operations cannot indicate the key of the

PANEL'86 EXPODATA 205

target element. The D operation is only defined at this levei. Here is the

compatibility table of the SK-level-one:

M L D

M N(*) N(*) N

L N(*) Yes Yes

D N Yes Yes

(*) the incompatibi!ities marked with an asterisk, may direct the

decision to the SK-level-two, provided that the key of the target

element is present as an operation parameter.

Nevertheless, we will not have here a compatibility table to characterize

the SK-level-two. The relations M==>M (here the symbol ==> means

precede), L==>M and M==>L do not create dependencies

!SCHWARZ & SPECTOR 84!, when each operation is realized on a

different element of the directory. Therefore it is sufficient to keep a Jist

that contains ali the parameters of the M or L operations which own a

lock on the object. The verification of the commutativity of one

(sub-)operation M(k) or L(k) just arrived (k = key of the directory e!ement

addressed by the operation), with the ones already in exccution, is done by

a simple search on the list (table) of accepted Jocks.

We recai] that the commutativity L(k)/L(k'), even if k'=k, is detected at

the SK -level-one, so the test does not h ave to be done at the

SK-Jevel-two.

SK-LEVEL-THREE - at this levei, we have the sum of the level-one and

1evel-two knowledge and, in addition, we know that the operations

commutativity depends on the object value.

Example .3.J - a bank account object that has, among the operations

defined on it, a general operation of money wíthdrawal that brings

together all the kinds of possible withdrawals. ln this case, two

withdrawal operations are commutative only if there is enough money in

the account.

206 YJI CONFERENCIA LATINOAlvlERICANA DE INFORMATICA

Example 3.2 - we retake the "strictly FIFO queue" of example 1.3. The

incompatibilities I/D and D/I may be removed by a procedure of the

Concurrency Contro! mechanism, that is capable of obsérving the object

contents to make its decision in the foUowing manner:

From example 1.2, we already know that when the queue is empty, there

is no commutativity between I and n. There are other equivalent

situations, and to show it Jet us state the variables:

nq = number of elements (validated) of the queue

no = number of D operations that own a lock on the object

nr = number of J operations that own a lock on the object

Effectively, the limit-situation is reached when nq=no, i.e. at the

moment the queue is potentially empty. In reality, the queue only

becomes truly empty, if all of the D-operations that own a lock on the

queue, are validated (we cannot forget that aborts are still possible before

validation). Anyway, since we have nq<no, we cannot guarantee that a

just arrived I-operation, will be compatible with all the E-operations that

already possess the lock. To demonstrate this, we suppose that this lock I

is granted. If this operation I is va!idated before the valldation of the last

D-operation, we will have a diHerent result from the one that would be

obtained if the validation of l had been done after the validatlon of the

last E. In this case, the commutativíty hypothesis is contradicted, and so

the assertion is demonstrated.

lt is interesting to observe that, even if the r!ifferent results mentioned in

the above demonstration, d0 not scem to r'aUsP consistency problems, they

have to be strictly prohibitedo Why?!! """ Rerause the Concurrency Control

mechanism has to guarantee a global serialization of the transactions, to

ensure the system's global consistency. The possible local

commutativities, that allow more pnrallelism and hence more potential

concurrE>ncy, are admitted on the r:ondition that it permits (or does not

prevent) the construction of a global execution order of the transactions

IGAR OARrN & MELKANOFF 821, Thus, the operations on an object that

have the rísk of givíng different results from the semantic point of vlew,

according to their execution (validation) ordering, have all to be seria!ized

at the local leve!.

PAJIJEL'86 EXYODATA 207

Returning to the example, if we have a P-operation arriving and other

I-operations tha.t already own a Iock, we consider that the limit-situation

still depends on the variables nq and nn. Effectively, the worst case

happens when aU the D-operations are validated before all the

1-operations. Thus to grant a D~Iock on the object concerned, supposing

that it already has other I-locks granted, it is necessary that the condition

nq>nn be true. Furthermore, if we have a request for an I-lock, and the

object has already granted other 0-!ocks, we will grant the lock only in

the case of nq>=no (we notice that the equality is admitted here).

Example 3.3 - we take again the "weak FIFO queue" of example 1.3.

Following the reasoning used in example 3.2, we can deduce that even the

c:ompatibility D/D, which seemed to be c:ompletely natural, could only be

decided at the SK-level-three. If we suppose there are only D-locks

granted, an arriving request for a new D-Jock, can only be accepted if

nq>no or if nq=zero. We summarize the Concurrency Control rules on this

object as fo1!ows:

a- compatibility table SK-level-one:

r f)

I Yes No

D i"-10 No

b - SK-level-three procedures:

b.! - incompe~.tibllity of SK-1evel-one the request for the

is granted on!y if nq>=nn;

b.2 - D/K: the request D is granted if nq>nn;

b.3 - D/D: the request is granted if nq>no or H nq=zero.

Obsenration - in the given examples, we studied one exceptional

situation of the queues: the possibiHty that it becomes empty. Clearly,

this is the most itnportant exception. However, in practice, we could

rareJy suppose a queue to be infinite. In these cases, we would also have

to treat the possibilíty of having a fui! queue. If this happens, we could

use reasoníng which is entirely analogous to the reasoning used in

examples 3.2 and 3.3. For instance, the compatlbilíty i/I wiH not be

208 XII CONFERENCIA LATINOAMERICANA DE INFORMATICA

possible at the SK-Ievel-one; it wiH also be decided at the

SK-level-three, using the maximum dimension of the queue.

SK-LEVEL-FOUR - we can imagine that it will be possible in the future, to

store and/or analyse the complete Semantic Knowledge about ali the

transactions and all the objects within a distributed system. With this

knowJedge, the Concurrency Control mechanism could find ali the possibilities

of commutativity between operations, as soon as the operations arrive. This

highest SK-level, corresponds to the "optimal schedulers" that utilize the

maximum information possible about the transaction system

!KUNG & PAPADIMITRJOU 791. This type of scheduler has the capability to

generate ali the possíble correct execution histories Oogs), and therefore it is

optimal with respect to the parallelism.

4 - THE NECESSARY MECHANlSMS FOR EACH LEVEL

We need to make some comments about the SK-level classification, before the

presentation of the mechanisms.

Initially we notice that there is no sense ín classifying at the SK-level-one, a

fundamer .tal operation that needs an exclusive access to the object. From the

poínt of view of the approach introduced here, this operation should in reality

be located at the SK -level-zero. Even at the SK -level-two, we do not h ave to

define a sub-operation that is incompatible with all thl" others at the sarne

levei. Ii this happens, we can 5ay that in fàct it can be rerluced to a

SK-level-one, or evento a different SK-level-zero operation.

The WRITE (W) and READ (R) operations, classic in the Concurrency C:ontrol

study for the nata Bases, already represent a certain SK-level. With our

approach, the \V operation - that requires an exclusive access to the object -

would be classified at the SK-level-zero. At the SK-Ievel-one, we would only

have the R operation, which is always compatible with itself.

Finally it is interesting to observe that the SK-level classification can be

augmented by the definition of other intermediate leveis. It is easy to conceive

PANEL'86 EXPODATA 209

for example that the Ievel-two operations may still be divided in other

sub-operations by the adjunction of other parameters. Each parameter added to

a basic operation, may establish a new sub-levei, with its corresponding

compatlbiHty tables. The dassification proposed here, seems to be a general

framework, and is able to accept some refinements concerning how to express

the Semantk Knowledge degrees of transaction systems.

4.1- The Concurrency Control mechanisms used at each SK-level

SK-LEVEL-ZERO - the guarantee of exclusive access, may be obtained by

managing a semaphore for each object.

SK-LEVEL-ONE - thls is a well-known case, and there is a vast Hterature about

it in the Data Bases dornain. From the definition of the fundamental operations,

we establish a compatibility table between the operations. The utilization of

this table with the two-'phase Iocking protocol IESWARAN et al. 761, ensures

global consistency. Obviously the mechanism will also manipulate a table which

keeps the granted locks.

SK-Ll:VEL-TWO - it is a generalization of the SK-level-one. According to the

object semantics, we can distinguish two types of implementations.

ln the first - as in example 2. I of the previous sectíon - we have one or severa!

compatibility tables of the SK-Ievel-two, each one corresponding to a pair of

incompatible operations at the SK-Ievel-one. A SK-level-two table, furnishes

the information about the compatibi1ity between the different exístent

sub-operations, derived from the fundamental operations. The Concurrency

Control algorithm, in deciding about the compatibility between a certain pair of

sub-operatlons, must flrst find the appropriate compatibility table, and then it

applies the two-phase locking protocol as in the SK-Ievel-one.

The second type of implementation is for instance, the one in example 2.3.

Here, instead of consulting a compatibility table for the SK-level-two, the

algorithm stores in a list, the parameter of each sub-operation that has a

granted lock. This supplementary storage may be added to the proper lock table

to facílitate the manipulations. An arriving Jock request, will only be accepted

if its parameter is not in the list (table) of granted locks. Naturally the logical

210 XII CONFERENCIA LATINOAMERICANA DE INFORMATICA .

complement of this algorithm, should be availabla as a variation of this type of

implementation; in this case it should only accept the sub-operations having the

sarne parameter as another already in the granted locks table. Obvlously9 this

second type of i.mplementation fits only in the situations where the parameters'

diversity cannot be lim.ited, or is too great, as in example 2.3. Otherwise, the

first type with its compatibility tables would be sufficient.

The choice of the type of implementation and its possible variations, ha.S to be

done as a preliminary, at the very moment of the conception and encapsulation

of the abstract object.

SK-lEVEl.-THREE - at this levei, the mechanism has the right to observe the

object contents to make its decisions. Example 3.1 of the previous section,

illustrates this idea very well.

Each object that is able to accept SK-1evel-three operations, wiU be initialized

with a special-purpose procedure, that verifies the commutativity of an

arriving request of operation on the object~ with ali the others which already

own a lock at that moment. This procedure may go as far as consultating the

semantic information conveyed by alJ the other operàtions that are present in

the lock table. This procedure may even execute the just arrived operation,

using the- current (validated) object va!ue, to accomplish its verification.

However, there are simpler situations, as in examples 3.2 and 3.3. Effectively,

the necessary lnformation on these objects, can be summarized within counters

for these examples. H these counters are stored in main memory, this access to

the object wiU not be much more expensive than the (mandatory) access to the

Jock table.

SK-LEVEL-FOUR - we are not yet capable of presenting the specifications for

this leve!. Nevertheless, previous work ILAMPOR T 761 has demonstrated .its

feasibility.

PANEL'86 EXPODATA 211

5 - THE RECOVERY PROBLEM

The need to :abort a transacth::m, may appear at random. The main events that

give rise to an abort are:

- faults

- deadlocks

- Promptness ControJ

- user request

Apart from in very spedaH:;urpose systems, ncrmaHy the Concurrericy Control

mechànism hàs to be able to deal with aborts in a way that preserves

consistency, ànd has to a1low transactions recovety. The dassical way to abort

a transacti.on, is to undo it~ by · resetting a H the objects that wer'e modified by

thê transaction, to the initial state encountered by the transaction. However,

when we use semantic knowledge that induce the commutativity of operations

that modify the object state, we t:annot simply reset the initial state, because

this . would lead the system to an inconslstent state; We recaU that the

commutativity of the operations on an object~ allows that the local order of

execution (and validation) of the commutative operations, is dlfferent from the

global serialization order of the transac:tions which those operations belong to.

Thus, it is necessary to have a supplémentary hypothesis to solve this problem.

We make the sarne supposition as that proposed by !GARCIA-MOLINA 831, i.e.,

we suppose that each operation involved in a commutativity relation, has a

counter-operation that is capab1e of undoing from the semantic polnt of vlew

the original operàtion. This counter-operation has to be imperatively

commutative with the other operations and counter-operations belonging to the

same commutative set of its original operation.

A counter-operation may be represented either by the inverse operation on the

abstract object; or by another compensatlng operation. Jn any case it must not

demand the allocation of objects other than the object already concerned,

because on this object9 the transaction has always the suitable lock, even duting

the abort execution.

This additional hypothesis is, of course, very strong and, consequently, greatly

reduces the ãpplicability of the proposed semantic leveis. We note that even the

212 XII CONFERENCIA LATINOAMERICANA DE INFORMATICA

existence of commutative operations, was .an already very restrictive

characteristic, to which we are obliged to add the existence of the

corresponding counter-operations. On the other hand, there are certainly many

particular systems, where the mechanisms proposed here, considerably increase

the concurency all over the system - see for instance !GARCIA-MOLINA 831,

IL YNCH 831, !SCHWARZ & SPECTOR 841, IWEIHL & USKOV 851, and

IWEIHL 831.

6 - THE CONCUR.RENCY CONTROL FLEXIDLE MECHANISM

Observing the description of the Semantic Knowledge leveis zero, one, two or

four, one notices that there is a perfect hierarchy between these leveis. The

SK-Ievel-zero does not permit any parallelism on the object. The SK-level-one

has a compatibility table that establishes the possible permitted concurrencies

between the operations defined on the object. The SK-level-two only exists for

each pai r of SK-1evel -one incompatible operations. Hence, we dearly see the

possibility of si multaneously controlling the two leveis: the ~ and the two. It

is sufficient to have a hierarchica1 structure on which the locking is made, and

that this structure be attached to the existent compatibility tables within each

leve!. This reasoning can equally be applied to the SK-!evel-three, that can be

reached either bv a SK-level-two incompatibi1ity or by another SK-level-one

incompatibility. To correctly solve all concurrency cases that may occur on the

ob ject, it w ill be sufficient to control an uni que tree of Jocks.

Thus, we can use an unique mechanism to control the concurrency on a object,

disregarding the SK-level of the transactions that utilize this object. And

further, such a flexible mechanism, will allow more parallelism as the

transactions (operations) Semantic Knowledge is higher. It dynamically adapts

itself, in a natural wav with respect to the arriving transactions (operations),

i.e., if it treats a group of requests that conveys a high SK-Jevel, it wi11 allow

more potential parallelism. On the other hand, when an arriving group of

requests (of operations) has at 1east one low semantic leve! request, the degree

of concurrency automatically decreases by the mE'chanísm functioning during

ali the period this request owns its lock.

PANEL'86 EXPODATA 213

6.1 - An example of the Flexible Mecharusm

We supposean objec:t that accepts the SK-levels one and two. The fundamental

operations defined on it, are the current ones usuaHy made in the Data Bases

Systems domain:

R - only has the right to read the object

W - has the right to modify the object

The SK-leve!-one is described by the foliowing compatibility matrix CMl:

R w
CMl: R 1 o where l=Yes

w o o and O=No

We also suppose that the type W operations cán modify the object, in three

different ways, identified respectively by the parameters A, B and C. So, W(A),

W(B) and W(C) will be the three possible sub-operations a,t the SK-level-two.

We still admit that W(A) and W(B) can be executed in any order, but W(C) is

commutative only wíth itself, The commutativities between these

sub-operations, are expressed by the c:ompatibiHty matrix CM2:

W(A) W(B) W(C)

CM2: W(A) 1 l o
W(B) 1 1 o
W(C)jO o I

To show clearly the hierarchical aspect, we represent the matrixes together,

adding a pointer (that may contain the nil value) to the SK-level-two within

e a eh CM 1 element. The following figure represents th is:

214 XII CONFERENCIA LATINOAMERICANA DE INFORMATICA

MC3 ~

PANEL'86 EXPODATA 215

If the incompatibilities R/W and W /R had some possibilities of compatibility at

the SK-level-two, they could be represented for example, by the matrixes CM3

and CM4 of the above figure.

The operations requested by the transactions, always have a we!l specified

SK-level. In our example, if a W operation does not convey a parameter, it wil1

be considered a SK-level-one request. During ali the time this operation has a

lock, it has to prohibit the simultaneous execution of other W's, even if they are

of the SK-Jevel-two. Therefore, a SK-level-one lock, can block one or severa!

possibilities of the SK-level-two - each set of (semantic) possibilities being

represented by a SK-1evel-two compatibility matrix.

On the other hand, each SK-levei-two W operation will only allow (possiblv)

other concurrent W's of the sarne SK-level. As long as there is at least one

SK-level-two W, no other SK-level-one W (and no other R either) can be

executed.

This example shows the need of a hierarchica1 locking table for this kind of

mechanism. The annex shows an implementation of the proposed mechanism,

and also describes its more important aspects.

7 - A DISCUSSION .1\BOUT OUR APPROACHES

The two principal approaches used ln the conception of the proposed

mechanism, are discussed in this section. They are the shared abstract types

approach to model the system's obíects, and the semantic knowiedge leveis

approach that utilizes semantic knowledge about the app!ication.

7.! - The Shared Abstract Types Approach

This approach was well studied in !SCHWARZ & SPECTOR 8t1l. The sarne

approach has been developped at the rvHT with the name of atomk data types

IWEIHL & USKOV 85L

216 XII CONFERENCIA LATINOAMERICANA DE INFORMATICA

7.1.1- ADV.J\NTAGES

The first and principal advantage is inherent to this approach. Effectively, the

manner of modeling objects as abstract types instandations, is already oriented

towards the distributed model of computing, therefore facilitating the

development of distributed systems in general. We recaU that the object is the

unit of permanent data within a system. This unit is used to control the

concurrent transactions. On the other hand, the manner of modeling objects in

the classical Data Bases approach, requires the utilization of special and often

very expensive techniques to pass from the centralized to a distributed

framework.

The foHowing advantages, are listed according to the dassification of required

characteristics of a Real Time Distributed System, described in ILE LANN 8.3!.

FLEXIBIUTY: this approach encapsulates the objects with some modules,

which constrains the objects to behave according to their specifications.

Hence, there is an obvious modularity in this approach. To change or

adapt the behaviour of an object, to fit new soecifications, we can

envelop it with a new encapsulation module IWEIHL & LISKOV 851. We

can still encapsulate severa! different objects to unite them. This

modularity considerably increases the system's flexibility.

CORRECTNESS: an abstract type specification may be clone through a

mathematical formalízation. The proof of correctness of ali the

operations on an object, is somewhat inherent to this approach.

Consequently, this rigor fac i li ta tes the transactions construction, and also

the establishment of a formal demonstration of the application's

correctness IUSKOV & ZILLES 741.

REUABIUTY: the abstract type approach makes possible an atomic

treatment of the object, as the one studied in IWEIHL & USKOV 851.

Thus, adding recovery procedures and even fault tolerant procedures to

the object encapsulation IWEIHL & USKOV 851, we could ensure a great

reliability at the local levei. Its extension to the global levei will depend

on other mechanisms, which will cope with the global atomicity and

resilience, and will enhance the local reliability.

. PANEL'86 EXPODATA 217

PROMPTNESS: in some particular cases, thls characteristic may be

improved. We take the example of an object that admits compensating

operations, Hke the ones mentioned in sectlon 5. Wé can imagine that it

will be possible in this case, to anticipate the vaHdation of an operation

that modifies the object. If the possibility of compensation does not

endanger the consistency, therefote we can obtain an improvement on the

promptness.

7.1.2- DISADVANTAGES

SPECIFiCA TION OF THE ABSTitACT TYPES: this is an inherent

disadvantage o:f this approach. We are obliged to conceive and develop

(and still program), the abstract types that are necessary to the

application. Thls handicap is represented 1n practice by a high

development cost in compatison with the other dassical approaches. We

already know that in the Íuture1 we will have languages and/or distributed

operating systems9 which wm offer some primitives to assiSt the

specification of abstract types, and even póssibly, the complete

encapsulation for the more frequently used types IWEIHL & USKOV 851.

Though this disadvantage tends to decrease with time, it wH1 not be

elimlnated.

OVERHEAD: obviously, this approach considerably increases the overhead

for aU the object utilizations. The first experiments reported, for example

the T ABS system from Carnegie-Mellon University !SPECTOR et aL 841,

confírm this assertion. However, we are sure that at least for the small

transactions or in general for applications that are simple, this approach

is not worthwhile. On the other hand, for the distributed systems of great

complexity, that have large size transactions, we can catch a glimpse of

good results for the paralle!ism degree, for the management of the

complexity, etc. It is stiH necessary to work out a lot of studies and

researches to find the trade-offs.

218 Xll CONFERENCIA LATINOA-MERICANA DE INFORMATICA

7.2 - The Semantk: Leveis Approadl

7.2.1- ADVANTAGES

I - the first advantage is to allow much more potential concurrency in

numerous cases, Hke for example the ones mentioned in section 3.

II - this approach onJy adds an overhead to the Concur.rency Control

mechanism, if it has to cope with the highest SK-levels. Indeed, take the

example of an implementation of the SK flexible mechanism presented in

section 6. Observing it, we ascertain its modularity with respect to the

SK-Jevels. The semantic lock table, the storing of the compatibilities, and

the procedures corresponding to the highest SK-levels (especially two and

three), are only used to treat the operations requests wlth these highest

leveis. As soon as we are sure of having only SK Jow levels operations (as

~ or ~ for example), we ~an remove practically aH that were added

to manage the other leveis, bringing the mechanism to the sarne overhead

of a dassical mechanism.

This reasoning can also be applied to the dynamic behaviour of the

system. Suppose we have on a site, the complete mechanism to cope with

all the SK-Jevels. To manage the requests of operations of the

SK-level-zero or SK-level-one, the mechanism will not have in practice

any increase in its time overhead with regard to the classical mechanisms.

Only in the case of the arrival of higher SK-level requests, will the

mechanism consume more execution time. Nevertheiess, at this moment,

we will have other gains from the point of view of the parallelism.

m - the utilization of SK -leveis, aHows us to obtain some profits with a

common situation in the practice of transactlon systems. Partlcularly in

the Real Time Systems, the transactions are specified, developed and

catalogued previously, to be dynamically launched later during the

system's life CUNHA & TEIXEIRA 841. In order to keep a sufficient

degree of generality for the transactions, we can think they wiU be

catalogued with the lowest possible SK-level about the objects.

Otherwise, at the moment of a transaction dispatching, the transactions

manager will have more precisions about the current state of the system,

PANEL'86 EXPODATA 219

allowing thi~ manner to augment the SK-:level of the transaction. Thus,

we can envi!'lage the nrefinement" of the SK of a transaction already

catalogued~ dynamically from the moment it ha1> to be iaunched. This

~'refinement11 may also otcur at the moment of dispatching a local action

on á site, becausé at this moment it cou!d take advantage of the known

results of the. (already executed) · previous actions.

The e:xample 0.2 in section 3, illustràtes this situation, · with the

emergel'lty transactions of a Rea.l Time System.

rv - the above advantage refers to the strátegy of static allocation of

resources. The strategy of dynamic allocation can however take

advantage of SK-levels utHization. Here, the moment when the

transaction requests the lock(s), i.e., the moment of dispatching the local

action on a site, it is precisely when there is the highest possible SK, and

then this is the best moment to decrease the probabHíty of conflicts, and

consequently increase the pote~tial parallelism. In attainlng a diminution

of the probability of conflicts occurrence, one favours the dynamic

allocation of objects by the decreasing of the aborts percentage, which is

the principal handicap of this strategy.

7 .2.2 - DISADV ANT AGES

A major disadvantage of this approach, is the limitatíon of its utilization to

only certain kind of applications. We refer the reader to section 5, for a

discussion of this subject.

8 - CONCLUSION

We rec:all that the theoretical base of the proposed mechanism, ls the work

developed ln !KUNG & PAPADIM!TR!OU 791, where the author:s demonstrated

the existent relation between the Concurrency Control permissiveness and the

semantk abr)Ut the applicatlono Using this idea, we defined four

leveis of Semantk Know1edge that are hierarchicaHy organizedo We

suppose the objects are modeied as abstract types. Thus, each request of an

operation on an object, conveys a well-known SK-level, which is used by our SI<

220 XII CONFERENCIA LATINOAMERICANA DE INFORMATICA

Flexible Mechanism. The higher the SK -leveis of the requests received by the

mechanism on an object, the more parailelism it allows on this object. Using our

F1exible Mechanism, the parallelism increases and decreases automatically,

according to the SK-levels of the requests on the object.

ln the literature, we find a similar idea in the protocol proposed by

IGRAY et ai. 761, to deal with the granularity of objects in a Data Base. Our

proposed framework can also be applied to control the concurrency on variabJe

granularity objects - see example 2.3 of section 3. Nevertheless, the

hierarchical protocoJ used in IGRA Y et a!. 761, is based on the more "physical"

concept of object granularity, whereas ours is based 6n the logical nature of the

operations on the object. So, our proposition is applicable to more general

situations "'" see section 3. We can sti11 note that the "intention modes" of

IGRA Y et ai. 761, when applied to a node, prevent undesirable accesses to the

underlying structure. There is an analogous situation in our mechanism, when a

low SK-level operation acquires a lock on a object and therefore blocks

undesirable accesses even if they have a high SK-level (see section 6).

The work !SCHWARZ & SPECTOR 841 had a lot of influence on our proposition.

Our approaches are significantly the sarne. From the description of the

examples studied in !SCHWARZ & SPECTOR 841, it emerges that their

Concurrency Control mechanism can explicitly utilize the parameters of the

fundamental operations defined on the object, in a way that is entirely

analogous to our SK-level-two. Furthermore, their mechanism needs in severa!

cases, to observe the object contents, as in ou r SK -level-three. This appears

only implicitly in the paper !SCHWARZ & SPEC:T0R 841, where the mechanism

is always presented ín the form of a compatibility table. ln this manner, they

cannot treat correctly the "weak FIFO queue" of example 3.3 of section 3, in

the cases where the queue may be contingently empty (or contingently full).

Hence, the utilization of compatibility tables between the operations - even

adding parameters to these operations - does not seem sufficient to correctly

express ali the possible cases of concurrency on the abstract types. Effectively,

it is still necessary to add special--purpose procedures, that are capable of

"refining" the verification of the commutativity, in ali the possible situations

that are not provided by the compatibi!ity table. This is done in a very natural

way in our SK-levels proposition, but is not explicitly treated in the proposition

. PANEL'86 EXPODATA 221

ISCHW ARZ & SPECTOR 84!.

The paper IWEIHL 831 introduces the notíon of dynamic atomicity. It models the

Concurreney Control mechanism (scheduler) and the encapsulation 6f the object

(modeled itself as an abstract type), into a single módule. This dynamic

atomkity. deady corresponds to our SK-level-three. The framework of

IWEIHL &31 is Iess :flexib!e than ours, because it does not allow simpler (and !ess

expensive) treatments.

FinaHy, we comrnent on the propositiuns of the CLOUDS Operating System

IALLCHIN & McKENDRY 831 with respect to ours. CLOUDS proposed four

conceptual !eve!s for the Concurrency Control mechanism, with the sarne idea

that the higher the levei, the more semanti.c information is available to the

mechanism, and so the more parallelism is aHowed. There is a fundamental

difference between the conceptual leveis of CLOUDS and the SK-levels. The

CLOUDS conceptual levels are mutually exclusive by definition, i.e., they

cannot simultaneously coexist within the sarne object and in the sarne

application. This is due to the fact that they were not defined in a hierarchical

manner, and so the mechanism cannot traverse, in a way that preserves the

consistency, from one leve1 to another, as we can do with the SK-1evels. In this

sense, our proposition allows much more flexibility.

We hope the framework proposed here, may lead to a more comprehensive study

oí the Concurrency Control on objects modeled as abstract types.

222 XII CONFERENCIA LATINOAMERICANA DE INFORMATICA

REFERENCES

IALLCHIN & McKENDRY 821 J.E. ALLCHIN et M.S. McKENDRY

"Object-based Synchronization and Recovery"

Georgia Institute of Technology, Technical Report GIT-ICS-82/15,

(septembre-1 982) 20p.

!ALLCHIN & McKENDRY 831 J.E. ALLCHIN et M.S. McKENDRY

"Synchronization and Recovery of Actions"

Proc. znd ACM SJGACT-SJGOPS Symposium o11 Principies of Distributed

Computing, Montreal (aoGt-1983) pp.3l-34

IBEERJ et ai. 831 C. BEERY, P.A. BERNSTEIN, N. GOODMAN, M.Y. LAI

et D.E. SHASHA

"A Concurrency Control Theory for Nested Transactions"

Proc. znd ACM SIGACT-SIGOPS Symposium on Principies of Distributed

Computing, Montreal (aout-1983) pp.45-62

!BERNSTEIN et al. 801 P.A. BERNSTEIN, D.W. SHIPMAN et J.B.ROTHNIE JR.

"Concurrency Control ln a System for Distributed Databases (SDD-1)"

ACM Transactions on Database Systems, Vol.5, No.l (mars-1980) pp.l8-51

!BERNSTEIN & GOODMAN 811 P.A. BERNSTEIN et N. GOODMAN

"Concurrency Control in Distributed Database Systems"

Computing Surveys, VoJ.l3, No.2 (juin-1981) pp.185-221

!BERNSTEIN & GOODMAN 821 P.A. BERNSTEIN et N. GOODMAN

"A Sophisticate's Introduction to Distributed 11atabase Conçurrency

Control", Proc. gth lnt. Conf. on Very Large Data Bases,

Mexico (septembre-1982) pp.62-76

ICAREY & STONEBRAKER 841 M.J. CAREY et M.R. STONEBRAKER

"The Performance of Concurrency Coritrol Algorithms for Database

Management Systems", Proc. 1oth Int. Conf. on Very Large Data Bases

Slngapore {aoOt-1984) pp.I07-:ll8

IDA CUNHA & TEIXEIRA &1?1 A.M. DA CUNHA et M.J. TEIXEIRA

"SIGMA - Um Executivo Distribuido para Ambientes Automatizados em

PANEL'86EXPODATA

IESWARAN et al. 761 K.P. ESWARAN, J.N. GRAY, R.A. LORJE et

I. L. iRAYGER, ''The Notiôns of Consistency and Predica te Locks in a

Database System'', Communicatkms of the ACM, Vol.l9 No.ll

(novembre-1976) pp.624-633

iGARCIA-MOUNA 8.31 H. GARCIA-MOLINA

223

"Using Semantic Knowledge for Transaction Processing in a Distributed

Database", ACM Transactions on Database Systems, Vol.8 No.2

(juin-1983) pp.l86-2l3

IGARDARIN & LEBEUX 771 G. GARDARIN et P. LEBEUX

"Scheduling Algorithms for Avoiding Inconsistency in Large Databases"

Proc. Jrd Int. Conf. on Very Large Data Bases,

Tokyo (octobre-1977) pp.501-506

IGARDARIN & MELKANOFF 821 G. GARDARIN et M. MELKANOFF

"Concurrency Control Principies in Distributed and Centralized

Databases"

INRIA- Rapport de Recherche No.llJ (janvler-1982) 9lp.

IGRAY et al. 761 J.N. GRAY, R.A. LORIE, G.R. PUTZOLU et l.L. TRAIGER

"Granularity of Locks and Degrees of Consistency in a Shared Data Base"

Proc. IFIP Working Conf. on Modelling in Data Base Management Systems

Freudenstad (janvíer-1976) pp.695-723

IGRAY8ll J.N.GRAY

"The Transaction Concept: Virtues and Limitations",

Proc. 7th Int. Conf. on Very Large Data Bases,

Cannes (septembre-1981) pp.l44-154

IKORTH 831 H.F. KORTH

"Locking Primitives ln a Database System",

Joumal of the ACM, Vo1.30 No.l (janvier-1983) pp.55-79

IKUNG &:. PAPADIMITRIOU 791 H.T. KUNG et C.H. PAPADIMITRIOU

"An Optlmality Theory of Concurrency Control for Databases"

Proc. ACM SIGMOO Int. ConL on Management of

Boston 16-126

224 XH CONFERENCIA LATINOAMERICANA DE INFORMATICA

lLAMPORT 761 L, LAMPORT

"Towards a Theory of Correctness for Multl-user Data Base Systems1'

Technical Report CA-7610-0712, Massachusetts Computer Ass~dates Im::.

(octobre-1976)

ILE LANN 8.31 G. tE LANN

"On Real-Time Distributed Computing"

Proc. IFIP-83 Congress, Paris (septembre-1983) pp.741-753

IUSKOV 821 B. USKOV

"On Linguistic Support for Distributed Programs"

IEEE Transactions on Software Engineering, Vol.SE-8 No.3 (mai-1982)

pp.203-210

ILISKOV & ZILLES 741 B. USKOV et S. ZILLES

"Programming with Abstract Data Types"

Proc. ACM SIGPLAN Symposium on Very High Level:Languages

Santa Monica (mars-1974) pp.50-59

IL YNCH !31 N.A. L YNCH

"Multilevel Atomicity- A New Correctness Criterion for Database

Concurrency Control"

ACM Transactions on Database Systems, Vol.8, No.4 (décembre-198.3)

pp.4!4-502

IMOSS 811 J.E.B. MOSS

"Nested Transactions: An Approach to Reliable Distributed Computing"

These Ph.n. MIT, Technical Report MIT/LCS/TR-260 (avril-1981) 178p.

!SCHWARZ & SPECTOR 841 P.M. SCHWARZ et A.Z. SPECTOR

"Synchronizing Shared Abstract Types"

ACM Transactions on Computer Systems, Vol.2, No.3 (aoOt-1984)

pp.223-250

ISHA et al. 83al L SHA, J.P. LEHOCZKY, E.D. JENSEN et N. PLESZKOCH

"Data Consistency and Transaction Correctness - A Modular Approach to

Non-serializable Transactions"

CARNEGIE- MELLON University, draft 06-aoGt-1983) 28p.

PANEL'86 EXPODATA

ISHA et ai. 83bl L SHA, E.D. JENSEN, R.F. RASHID et J.D. NORTHCUTT

"Distributed Co-operating Process and Transactions"

in Distributed Computing Systems- Synchronization, Control and

Communication, Y.PAKER ed., ACADEMIC PRESS 0983) pp.23-50

ISHA 841 L SHA

"Modular Concurrency Control and Failure Recovery ..• Consistency,

Correctness and Optimality"

These en préparation à l'Université CAR NEGIE-MELLON,

draft (29-aout-1984-) 12p.

ISPECTOR & SCHWARZ 831 A.Z. SPECTOR et P.M. SCHWARZ

"Transactíons: A Construct for Reliable Distributed Computing"

ACM Operating Systems Review, Vol.l7, No.2 (avril-1983) pp.18-35

!SPECTOR et a!. 811-l A.Z. SPECTOR, J. BUTCHER, D.S. DANIELS,

D.J. DUCHAMP, J.L. EPPJNGER, c:E. FINEMAN, A. HEDDA YA &

P.M. SCHWARZ

"Support for Distributed Transactions in the T ABS Prototype"

CARNEGIE-MELLON University,

Technical Report CMU-CS-84-132 (juillet-1984-) 25p.

IWEIHL 831 W.E. WEIHL

"Data-dependent Concurrency Control and Recovery"

Proc. 2nd AC M SJGACT -SIGOPS Symposium on Principies of Distributed

Computing. Montreal (aout-1983) pp.63-75

IWEIHL & LJSKOV &51 .W.E. WEIHL et B. USKOV

"lmplementation of Resilient Atomic nata Types"

ACM Transactions on Programming Languages and Systems,

Vot7,No.2 (avril-l 985) pp.2lflf-269

225

